A ILHA DE CALOR DE LISBOA. AQUISIÇÃO DE DADOS E PRIMEIROS RESULTADOS ESTATÍSTICOS PARA APLICAÇÃO AO ORDENAMENTO URBANO

Maria João Alcoforado, Henrique Andrade, António Lopes, Sandra Oliveira Centro de Estudos Geográficos Universidade de Lisboa

I. INTRODUÇÃO

Em 2015, as cidades com mais de 10 000 000 habitantes (*Megacities*) albergarão 9.4% da população mundial (http://www.un.org/esa/population/publications/WUP2005/2005WUP_FS7.pdf, [consulta em 11 de Julho de 2007]). Os problemas ambientais, tais como a má qualidade do ar e da água, o ruído e o *stress* térmico são particularmente severos nas cidades e, por outro lado, as áreas urbanas têm graves impactes externos, através do consumo de recursos (água, espaço, energia, matérias primas, etc.) e da produção de resíduos. Segundo Mills (2006), a nova *utopia* urbana é a cidade sustentável, cujos impactes externos são minimizados, sem levar a uma diminuição da qualidade de vida dos citadinos (Newman, 1999; Kamp et al., 2003).

O stress térmico é intensificado na cidade devido à existência da "Ilha de Calor" (IC), ou seja, de áreas (frequentemente no "centro") em que a temperatura é superior à da periferia. Distinguem-se três tipos de IC, relacionadas entre si, mas de génese, magnitude e dinâmica temporal bastante distintas: a IC de superfície corresponde à ocorrência de temperaturas mais elevadas nas superfícies urbanas do que nas superfícies rurais (Alcoforado, 1986; Lopes, 2003); a IC da atmosfera urbana inferior (urban canopy layer), ocorre entre o solo e o nível médio do topo dos edifícios (Oke, 1987; Alcoforado, 1992; Andrade, 2003) e a IC da atmosfera urbana superior (urban boundary layer), que se sobrepõe à anterior, estende-se por vezes até à atmosfera livre: trata-se da parte superior da camada-limite, em que as características de temperatura (e também de humidade, turbulência e composição

da atmosfera) são influenciadas pela presença da cidade (Oke, 1987; Fallot e Alcoforado, 1988; Alcoforado, 1992). Neste texto, tratar-se-á das ilhas de calor da superfície e, em maior pormenor, da atmosfera urbana inferior.

Além de afectar a saúde e o conforto dos habitantes das cidades, a IC tem consequências no consumo de água e de energia e na qualidade do ar (o aumento de temperatura acelera o processo de formação de poluentes fotoquímicos). É por isso importante que o planeamento e o ordenamento das áreas urbanas tenha em consideração estes aspectos, com vista à manutenção de uma boa qualidade de vida e à sustentabilidade urbana (Andrade, 2005; Alcoforado *et al.*, 2005; Alcoforado, 2006). Numa altura em que diferentes cenários apontam para um aquecimento global (IPCC, 2007), deverá evitar-se, a todo o custo, aumentar a temperatura nas áreas urbanas, uma vez que, segundo Grimmond (2006), o aquecimento já ocorrido nas cidades, nas últimas décadas, é semelhante, ou mesmo superior, aos efeitos esperados para o futuro, a partir das previsões dos modelos climáticos globais.

Em Lisboa, o estudo da IC foi iniciado há cerca de duas décadas (Alcoforado, 1992). Desde então, temos vindo a desenvolver as técnicas de aquisição de dados, para aumentar a representatividade temporal da amostragem e as técnicas de interpolação espacial para resolver o problema da limitada representatividade espacial dos locais de observação (Alcoforado e Andrade, 2006). Neste texto, debruçar-nos-emos sobre o primeiro daqueles pontos. Tentaremos mostrar como se foi evoluindo até poder apresentar agora, em primeira mão, dados frequenciais da IC de Lisboa, indispensáveis para uma efectiva e útil aplicação prática destes conhecimentos ao planeamento e ordenamento das cidades. Só a partir daqui se poderão vir a contabilizar as vantagens/desvantagens da IC em termos de conforto e saúde dos habitantes, assim como os benefícios/prejuízos, que daí advêm.

II. DETECÇÃO REMOTA E ILHA DE CALOR DE SUPERFÍCIE

Num primeiro trabalho, verificou-se, a partir de uma termografia obtida de avião, a 10 000 pés de altitude, no início de uma noite de Inverno, que as superfícies do centro da cidade e ao longo dos principais eixos rodoviários se conservavam bastante mais quentes do que as áreas de menor densidade de construção, de edifícios sem aquecimento central e de vias com menos tráfego rodoviário (Alcoforado, 1986).

Só bastante mais tarde, se conseguiu informação para levar a cabo um estudo sistemático das temperaturas de superfície. A análise foi efectuada a partir de 438 imagens térmicas (187 diurnas e 251 nocturnas) em situações de céu limpo, de Agosto de 1998 a Julho de 1999, derivadas do satélite NOAA-AVHRR 14. A interpretação foi levada a cabo a partir do tratamento de uma imagem Landsat5 TM.